

visionary

Smart Poultry Nutrition

Martin J. Zuidhof Poultry Innovation Showcase Webinar February 3, 2021 <u>mzuidhof@ualberta.ca</u>

POULTRY INNOVATION PARTNERSHIP

change

collaboration opportunity

poultryinnovationpartnership.ca

How Are Things in Your World?

Light Management is Complex, and it Matters!

Broiler breeders on the verge of being underfed will not undergo pubertal development

GnRH Feed (esp. during puberty) Body composition

Suboptimal management can be like applying the brakes on your car

Some Lighting Insights

Night-time supplemental lighting

Adriana Rodriguez MSc student - Dr. Gregoy Bédécarrats University of Guelph

Night-time Supplemental Lighting

- Supplemental red light (24 h/day exposure) delayed onset of lay in a dose-dependent manner
- "Photorefractory"

Lighting

Main house lighting: Supplemental lighting: Fluorescent (dawn / dusk) Green monochromatic LED (λ =480 nm) @ 2-10 lux inside precision feeding station only

□ Light ■ Dark

Egg Production Conventional vs. Precision Feeding

(Precision Fed) Hens on a Higher Target BW Laid Better...

Egg Production on Standard Target BW

Egg Production on High Target BW

Smart Agriculture

► What is Precision Farming?

- Using sensor data to implement optimal decisions in real-time
- Precision Feeding (PF) is an example of precision farming
- Smart Nutrition uses big data to optimize feeding decisions in real-time

In the poultry industry, can the benefits of PF outweigh the costs?

Driving Motivation for PF: Uniformity as it Relates to Broiler Body Weight Evolution

Adapted from Renema et al., 2007 Photo (adapted): Zuidhof et al., 2014

Precision Feeding Protocols

► Feed to any criteria

- ► Target BW (breeders)
- Ad libitum
- Specific diets
- Feed restriction
 - Specific days
 - Specific times of day
- Proportion of target
 - ► BW
 - Feed curve
 - Paired bird(s)
- Future: model-based match of feed to meet realtime requirements

Training Phase

- 10 to 14 day acclimation period
- Provide ad libitum access to feed
- Progression of feeding station modes
 - Training (with supplemental feed)
 - Movement training
 - Transition
 - Individual
- Remedial training

Body Weight (0 to 52 wk)

Feeding Frequency Matters!

Feeding Frequency Matters!

Broiler breeders are severely feed restricted

Conventional Feeding

- ▶ 1 meal per 24 or 48 hours
- Overwhelm the system periodically with nutrients
- Some fat is stored

Precision Feeding

- ▶ 10 meals per day
- Growing tissues lap up nutrients in real-time
- Very little fat is stored

Diurnal Feed Intake Pattern

Example: 1 day during rearing (70 d of age)

Week=10 Day=70

Cobb GP

Body Composition at Photostimulation

At 22 wk, PF birds had more breast muscle... ... and similar (or less) abdominal fat

Increasing Feed Restriction Intensity has Reduced Broiler Breeder Fat (at Photostimulation)

Year

Precision-fed Breeders were 3 to 4% more Efficient

^{a,b}within experiment (line), P < 0.05

Fertility was 3.8% Higher with Precision Feeding

Does Precision Feeding Make Economic Sense?

Scenario	Benefits	Net
Females	Chick production Alberta: 145 vs. 115 (>25%) • 30 extra chicks	\$19.50/hen

Assuming 50 hens/station, break even cost* per station: \$975

		\$42.30/rooster
lales	 68.4 extra chicks per rooster 	37.62
	 No replacement males 	2.80
	 Feed: efficiency & no spiking 	1.88

Assuming 50 roosters/station, break even cost* per station: \$2,115

*What you could pay for a station and make back your money in one cycle

Offspring Studies

Does precision feeding affect broiler performance? Does the maternal BW profile affect broiler performance?

Next Steps

Optimizing maternal growth profiles

► Multiphasic (3-phase) growth model

Broiler Breeder 3-Phase Growth

Age (wk)

Adapted: Zuidhof, 2020

Hypothesis Building: Prepubertal Gain

Image: Zuidhof, 2020

Hypothesis Building: Pubertal Gain

Image: Zuidhof, 2020

Hypothesis Building: Timing of Pubertal Gain

Image: Zuidhof, 2020

The Goal of Multiphasic Growth Modeling

To find a growing strategy that optimizes body condition to sustain high hen productivity

- There are an infinite number of potential broiler breeder target BW trajectories
 - ► Which is/are optimal?
- Shift in thinking:
 - FROM comparisons of discrete growth strategies
 - TO response to continuous model parameters

(optimization)

Next Steps

Optimizing maternal growth profiles

► Multiphasic (3-phase) growth model

On-farm precision feeding

- ► Males
- ► Males and females together

Next Steps

Optimizing maternal growth profiles

► Multiphasic (3-phase) growth model

On-farm precision feeding

Males

Males and females together

Precision formulation / blending

- Quantifying variation in individual nutrient requirements
- Model-based determination of nutrient requirements
- Precision delivery of the right feed to the right bird at the right time.

Acknowledgement

Precision Feeding – Uses and Expectations

Commercial

- Grow uniform flocks
- Increase efficiency
- Maximize productivity
 - ► Eggs, fertility, chicks
- ▶ Reduce excretion (N, P, CO₂, NH₃)
- ► Reduce labour, stress

Research

- Deploy complex experiments with less labour
 - Body weight control
 - Feed intake control
 - Targeted nutrient intake for every bird every time
- High resolution BW and FI data
 - Broilers (> 3,000 records per bird in 6 wk)
 - Breeders (> 20,000 records per bird in 52 wk)
- Feeding behaviour
- Every free run bird = experimental unit
- Teaching
 - Excellent environment for training HQP
 - Insights from exposure to non-traditional system