

The colour in the barn!Does wavelengthaffect broiler production andwelfare?B. Franco and K. Schwean-Lardner

Acknowledgments

- Dr. Bruna Franco
 - PhD student focusing on this work
 - This is a shortened version please watch for Bruna's defense in the spring!
 - Thanks for the slides!
- Funding
 - NSERC Discovery Grant Funding
 - Aviagen NA

Previous literature

- Green and blue lighting (Rozenboim et al., 2014; Yang et al., 2015; Mohamed et al., 2017)
 - a) Improved market body weight
 - b) Improved feed efficiency
 - c) Increased breast muscle deposition
- Yellow light (Kim et al., 2013)
 - a) Improves body weight gain
 - b) Improves feed consumption
- No differences! (Wathes et al., 1982; Praynito et al., 1997)

University of Saskatchewan

- Doesn't completely agree!
- Why? Avian visual ability different than humans!
- Rods vs cones

Human Photopic Response

Domestic Fowl Photopic Response

Spectral sensitivity of the domestic fowl (Gallus g. domesticus), Prescott and Wathes, 1999

Background

Background

- Long wavelengths (e.g. red) able to penetrate cranial tissues more than short wavelengths (e.g. blue) (Pang et al., 1974, Prescott and Wathes, 1999)
- Path of light reception may result in different behaviours and physiological responses

Result of differences

- Birds see different light intensities than we do, especially under coloured lighting!
- LUX light measure based on human visual ability
- Because birds see better than we do under some wavelengths, LUX is inappropriate measure of intensity
 - a) Studies comparing wavelength, and measuring intensity via LUX, may be confounding the experimental treatments
 - Wavelength AND intensity
 - b) <u>CLUX</u> (corrected lux, or chicken lux) appropriate comparison

UNIVERSITY OF SASKATCHEWAN WORK

Research Objectives

Determine effect of wavelength on the production/welfare of broilers

- Blue [435-500nm]
- Green [500-565nm]
- White [400-780nm]
- Lighting created for us by Greengage Lighting

Experimental design

- Experiment was replicated twice
- 7,128 broilers per trial (total of 14,256)
- Treatments
 - 3 lighting wavelengths (colours)
 - 2 strains (Y-708 and E-708)
 - 2 genders
- 9 individually controlled rooms (3 rooms per wavelength)
- Rooms subdivided in 12 individual pens
- Stocking density 31 kg/m²

Lighting program

- Day 1 23L:1D; reduced gradually, day 5 - 16L:8D
- Light intensity (1-7 days):
 - Trial 1: 9.6 clux; trial 2: 14.3 clux (Hato[®] Gallilux Light Meter)
 - Equal between rooms/trial
- Light intensity on remaining weeks:
 - 9.6 clux
- Spectral outcome of lamps [Lighting Passport (Asensetek ®)]
- Dawn and dusk transitions (15 min)

RESULTS: PRODUCTIVITY

Body Weight (kg)

Body Weight (kg)

Feed intake (kg)

Gain to feed ratio

Mortality (percent of placed)

Flock uniformity (within 15% of average)

100.00

Scratches (percent of live birds tested)

Summary – Production Data

- a) Growth rate
- b) Feed intake
- c) Feed efficiency
- d) Uniformity
- e) Mortality

Data collection

Mobility

Birds were placed in an empty area and were individually encouraged to walk. The walking ability of birds was assessed in a score of 0 to 5 (Garner et al. (2002)).

Footpad Dermatitis

Birds were assessed by the presence of hock burns with regard to the severity scale, scoring categories 0/1/2/3/4 (Welfare Quality ® Assessment (WQ) protocol for Poultry (2009)).

Gait score

Foot pad dermatitis

Summary – Lameness and Footpad Health Data

- No effect of wavelength
 - a) Gait scores
 - b) Lesion scores

BEHAVIOUR (EXPRESSION, FEAR AND STRESS)

	Green	Blue	White	P value
Time at the feeder	7.20a	5.83b	4.91c	0.005

	Green	Blue	White	P value
Time at the feeder No difference in body weight	7.20a	5.83b	4.91c	0.005

	Green	Blue	White	P value
Time at the feeder No difference in body weight	7.20a	5.83b	4.91c	0.005
Walking	3.41b	1.29c	8.15a	0.0001

	Green	Blue	White	P value	
Time at the feeder No difference in body weight	7.20a	5.83b	4.91c	0.005	
Walking No differences in gait score	3.41b	1.29c	8.15a	0.0001	

	Green	Blue	White	P value
Time at the feeder No difference in body weight	7.20a	5.83b	4.91c	0.005
Walking No differences in gait score	3.41b	1.29c	8.15a	0.0001
Inactive	75.65b	75.96a	72.81b	0.03

	Green	Blue	White	P value
Time at the feeder No difference in body weight	7.20a	5.83b	4.91c	0.005
Walking No differences in gait score	3.41b	1.29c	8.15a	0.0001
Inactive No differences in gait score	75.65b	75.96a	72.81b	0.03

	Green	Blue	White	P value
Time at the feeder No difference in body weight	7.20a	5.83b	4.91c	0.005
Walking No differences in gait score	3.41b	1.29c	8.15a	0.0001
Inactive No differences in gait score	75.65b	75.96a	72.81b	0.03
Dustbathing	0.18b	0.22b	0.32a	0.0001
Foraging	0.74b	1.22a	0.84b	0.0001

Tonic Immobility Test:

 Birds were placed on their back in a tonic immobility saddle and restrained for 15 seconds (Jones and Faure, 1981), latency to rise was measured

Novel Object Test:

 Bright, multicolored, movable novel object was placed in the center of the pen, time monitored until 3 birds within the pen pecked the object (Hughes and Black, 2007)

Response to Observer Test:

• Count the number of birds that move as a result of the passage of an observer (Schwean-Lardner et al., 2012)

Fear

Longer tonic state correlates to higher fear levels

■Green ■Blue □White

Higher percent movement away correlates to higher fear levels

Fear

Longer approach time correlates to higher fear levels

Stress

• Heterophil to lymphocyte (H:L) ratio

Summary - behaviour

- Some changes to activity patterns
 - a) Blue light birds less active
 - b) White light birds spend more time at the feeder
- Blue light birds
 - a) Less fearful
 - b) Less stressed
- ADDITIVITY OF STRESSORS!

DOES BEHAVIOURAL CHANGES RELATE TO EYE HEALTH?

Eye measurements

- Alteration in shape and size could influence vision functionality
- Birds were euthanized and eyes were enucleated
- Weights and dimensions were collected:
 - Corneal diameter, mediolateral diameter, dorsoventral diameter and anterioposterior size.
 (Vermette et al., 2016)

Results

Eye measurements

Table 2. Effect of different wavelength on left eye weight and dimensions at 17 days of age.

		Light			
Measure	Blue	Green	White	P-value	SEM
Eye wt. (g)	1.12	1.14	1.16	0.13	0.001
Eye wt./body wt. (%)	0.03	0.03	0.03	0.51	0.236
Corneal dia. (mm)	6.40	6.39	6.42	0.95	0.029
DV dia. ¹ (mm)	13.94	14.06	14.19	0.22	0.073
ML dia. ² (mm)	13.92	13.94	14.16	0.14	0.060
AP depth ³ (mm)	11.57	11.66	11.52	0.78	0.067

¹ Dorso-ventral (DV) diameter

² Medio-lateral (ML) diameter

³ Anterior-posterior (AP) depth

Refraction Index

 Assessment using an autorefractor (Royal University Hospital, U of S)

 Detects if eye properly focuses an image

(Leis et al., 2017, Li et al., 2019)

Results Eye health

Table 1. The effect of different wavelength onintraocular pressure (mmHg) at 21 days of age.

		Light			
	Blue	Green	White	P-value	SEM
IOP	8.58	8.83	8.88	0.74	0.122

Chromatic PLR, slit-lamp and fundus assessment of birds did not reveal any abnormality

Results Refraction index

Table 3. Effect of different wavelength on results fromautorefractor assessment on broilers at 26 days of age.

		Light			
	Blue	Green	White	P-value	SEM
Sphere	0.625 ^a	0.083 ^{ab}	-0.020 ^b	0.01	0.1032
Cylinder	0.604	0.458	0.667	0.62	0.0651
Axis	121.58	114.50	117.83	0.91	6.8692

^{a, b} Means with common letters do not differ significantly (P≤0.05)

Spatial Vision

- Birds under BL or WL went under a grating acuity test at 3 different distances: 50, 75 and 100 cm
- Determine if birds were able to discriminate details of the visual scene

(DeMello et al., 1992, Bittner, 2012)

Results

Spatial vision

Table 4. The effect of wavelength on visual acuity of broiler chickens at 29 days of age

	50 cm			75 cm			100 cm		
	Blue	White	P- value	Blue	White	P- value	Blue	White	P- value
Average time to									
approach (sec)	8.6 ^b	15.8ª	0.03	5.9 ^b	27.1ª	0.006	11.7	13.2	0.42
Success	91.7	91.7	1.0	91.7	66.7	0.16	91.7ª	50.0 ^b	0.03
ale (70)			_	-					

^{a, b} Means with common letters do not differ significantly (P≤0.05)

Conclusions

- Our results (ensuring light intensity is the same across treatments) indicate that
 - a) Utilizing monochromatic light for broiler production does not improve growth rate, feed efficiency, or flock uniformity in a well-managed flock
 - b) Mortality levels do not differ under different light wavelengths
 - c) Ability to see may differ slightly!
 - d) Behavioural expression changes a bit birds are less active under blue compared to white light
 - e) Fear and stress levels are much lower under blue light!

Should you switch?

- Lowering fear and stress improves bird welfare
 - a) Additivity of stressors?
 - b) If birds are not growing to potential, changing to blue/green may improve productivity
- Work environment?

KAREN SCHWEAN-LARDNER (KAREN.SCHWEAN@USASK.CA)

BRUNA FRANCO (BRUNA.FRANCO@USASK.CA)