Novel techniques in poultry feed formulation A revolution in the poultry enterprise

Research Associate and Animal Nutritionist

Poultry Innovation Showcase

December 2021

POULTRY INNOVATION PARTNERSHIP

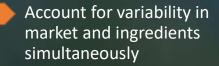
visionary cha

change collaboration opportunity

poultryinnovationpartnership.ca

Outline

Feed formulation steps


Feed formulation targets from a novel perspective

Least Cost

Maximum Profit

Account for variability in nutrient composition of ingredients

Walk through some feed formulation practices in Excel

Future direction

Feed formulation main steps

- 1. Nutrient requirements of the animal
- 2. Nutrient composition of feed ingredients
- 3. Using a precise feed formulation method to match nutrient supply with nutrient requirements

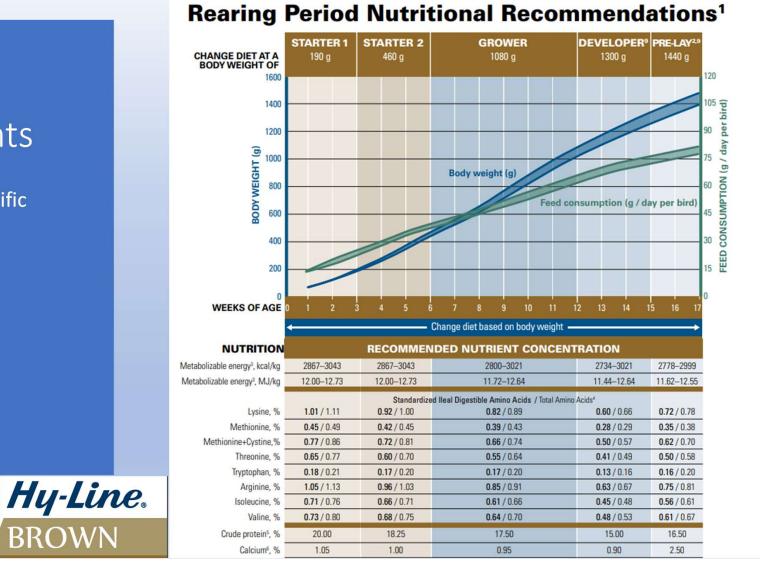
Ingredient: 2 Name: 4	8% SOYBEAN	MEAL			-	-		-		Hel
Get Ingr	First Prev Next	Last Add New	Ingr	Delete Ingr	SaveAs	<u>O</u> verlays	Print	Notes	Edit	e≚
General	Tag (Labeling) Con	trols								
Description		C No	trients	Туре		Costs	Chine H	Status	Min	
Full Name: 48% SOYBEAN MEAL				-	*	COsts	2000	Status	min	max
Short Name (16 Char Max):				ent Name		Inits		Min	Max	1
Alternate Code (8 Char Max):		18	SUGA			CT				
		19		DET. FIBER		CT				
Moisture:	97.0000 Pct	20		. DET. FIBER		CT				
Round Amount: 5.	00 Pounds	21		FIBER CARB		CT				
Production Minimum: 2		22		R; CRUDE		CT		-		
	0.00 Pounds	23		EIN; CRUDE		CT	40.0	0000	52.0000	2
(Legacy) PI-Code:		26		EIN; DIG.		CT		_		T
Mix Report Parameters:		27		PROTEIN EG		CT				
		28		S PROT % W		OF WT.				
Bin: Seq	uence: 1	29		S PROT % C		OFCP				
Scale: 1	Other:	- 30		SS/CRD PRI		ATIO				
11		31	SIP			OFCP				
Equivalent Formu		32	DIP			OFCP				
		35		CRUDE		CT				
Is Ingredient Also a Formula ?	C Yes . No	36		ADDED		CT				
		37		LEIC ACID		CT				
		40	ARGI			CT				
		41	LYSH			CT				
		42		HONINE		CT				
		43		I + CYST		CT				
		44		TOPHAN		CT				
		45		ONINE		11		_		~
				and a contra					_	_

and the second se	tie ge	0		1	9		-	1				1	0	1.1	0		1.5	-	U.	14	W			7	-
		M IT	ÊĒ	10			net	ruc	-										GRAN				-		
Units : % on air dry basis brut					Dry .	Crude										de right e			Control of						-
	041 4		Max.	Watarda		Anh					AD	ADK "	Name .	*wap	* can	Summer-	iver.	Mathan	SAL	Theman	Transe	Calcin	Prest		0
				DIE		MARCO	CITIC.		TIDEY			ACT		NGRE			POS				and pers		IVE		
army citelia data	0,4 11		15	ELNEI	66.0		10.1	2.8	4.6	17.5		1.9	12.4	66	DIEN	2.50	0.76	617	0.42	0.36	. 2.11	0.04	0.54	0.02	
theat (BUEA SD)		10.1	18	-	88.0	18	12.8	11	33	11.0	31	0.9	71	8.0	83	2.60	0.23	018	0.45	0.34	0.14	0.04	0.58	0.02	6
Intel tran (NRA 104)		×.,	2	1.1	00.0	6.0	15.2	34	85	455	113	3.5	28.7	2.9	10	5.00	0.59	0.24	0.55	0.48	1.18	0.45	1.05	6.85	12
Net missee (NILA 224)			1	- 21	75.0	8.8	115	1.6.6	5.0	0.0	8.0	2.0	1.4	0.0	1.11	#1.00	0.04	0.25	8.10	0.08	3.12	0.22	0.02	5.50	17
or forward mail 28 (MIA 194)			16.1		90.0	6.8	27.8	27	26.2	42.8	39.2	10.1	12.8	7.2	0.0	5.55	5.00	\$17	1.22	1.03	-12	6.35	0.04	111	1
charte mese 13 (INKA 252)			40	1	10.0	11	12.5	24	.01	41.0	32.0	12	86	1 88	8.8	2.00	0.00	813	1.41	10.00	10	130	0.00	207	16
leet puts (NRA 202)			5	1	80.0	7.2	8.0	10	18.0	42.8	512	14	216	25.0	8.0	0.00	0.53	019	8.31	0.44	0.09	0.76	6.10	625	6
theat et an (NGA 255)			10	1	90.0	141	-11	12	355		47.4	10	17.8	22	1.5	8.00						6.56			
tenis las suggeste		8.1	11		90.0	100.0		1.00								- 14									17
atour Carbonate		-	1	1.1	85.0	15.0																37.50			
Scalar Corporate			14		25.0	81.8																	17.54		
at rect			16.8	1	95.0	96.0																		35.40	ίħ.
-Lysine HCL - 58%			92	1	98.0	41	95.4										75.40					0.04			1
tethionne - DL - 99%			82	1	89.0	42	587											9930	19.00			8.62			
loya bear mear ell ("ell'i-RRA 100)			15	- 10	90.0	43	45.0	1.8	6.2	13.2	82	14	3.0	63	0.0	8.00	2.54	0.13	1.21	1.78	0.00	629	0.01	6.52	16
a paranthesis, the number of the vigitable					ENT	COM	POSI	TION	MAT	RIX		STO	RAG	EING	REDIE	NTC	OMPO	SIT	ON MA	TRIX		STO	RAG	EIN	GI
Sarey (BILA 04)	- 7	-		1	88.0	22	19.3	2.0	4.8	17.5	5.5	2.9	12.8	0.6	. 65	2.55	0.59	\$17	8.42	9.56	0.13	0.08	0.56	6.22	10
ARTH MAR (BRA. 82)				- 11	88.0	12	82	3.5	4.6	95	2.5	0.5	7.6	87	64	1.53	0.23	017	0.35	0.39	0.04	0.82	6.26	0.04	16
Mar (Niko Se)					86.6	12.0	10.4	8.1	49.8	34.4	13.6	23	14.8	1.1	1.12	1.84	0.00	0.00	1.43	0.07	1.12	0.10	6.36	0.02	12
16cale (R/6A N2)					08.0	1.8	11.0	1.8	2.3	12.5	51	0.9	9.4	0.0	57	3.00	0.39	019	0.48	0.56	0.14	0.05	0.54	0.01	0
Ineat (MRA 80)				1	08.0	1.6	12.8	18	22	11.0	21	11	7.9	45	.60	2.50	0.33	018	8.45	8.34	0.14	0.04	0.35	8.42	0
							1000		1.1		10000	00	1.00					- 223-	1000	10.00	a total	1.000			1.
Den aluten heed (Italia, 114)				- 1	00.0	1.82	213	43	28	362	14	12	것문	50	18	2.00	0.71	0.81	8.00	8.68	2.18	6.17	0.241	8.32	0.
OGS(gred deliters grane and antide) falls 1	10			1	90.0	.44	227	14	41	37.8	12.8	14	22.7	55	-92.5	100	0.60	#31	0.00	2.09	2.12	\$14	0.73	8.85	. 9
fait aprouts (NRA 132)				- 1	90.0	6.1	122	13	12.6	- 31 R	12.8	1.0	10.0	. 30	11	7.00	1.00	0.01	8.00	0.01	0.22	0.21	0.56	0.00	~ Ø

Nutrient requirements

LOHMANN

• Age-specific


Table 7: Recommendations for Nutrient Levels for LOHMANN BROWN-LITE Pullets

Diet type*		Starter**	Grower	Developer	Pre-Layer
		1. – 3. Week	4.–8. Week	9. – 16. Week	17. Week – 5 % Production
Metabol. Energy	kcal/kg	2800	2800	2800	2800
Metabol. Energy	kcal/lbs	1275	1275	1275	1275
Minimum	MJ/kg	12.00	11.70	11.70	11.70
Crude Protein	%	20.00	18.50	15.00	17.00
Methionine	96	0.48	0.40	0.34	0.36
Dig. Methionine	%	0.39	0.33	0.28	0.29
Methionine/Cystine	96	0.83	0.70	0.60	0.68
Digestible M./C.	96	0.68	0.57	0.50	0.56
Lysine	96	1.20	1.00	0.70	0.85
Digestible Lysine	96	0.98	0.82	0.57	0.70
Valine	96	0.89	0.75	0.53	0.64
Dig. Valine	96	0.76	0.64	0.46	0.55
Tryptophan	96	0.23	0.21	0.16	0.20
Dig. Tryptophan	96	0.19	0.17	0.13	0.16
Threonine	%	0.80	0.70	0.50	0.60
Dig. Threonine	96	0.65	0.57	0.40	0.49
Isoleucine	96	0.83	0.75	0.60	0.74
Dig. Isoleucine	96	0.68	0.62	0.50	0.61
Calcium	96	1.05	1.00	0.90	2.50
Phosphorus total	96	0.75	0.70	0.58	0.65
Phosphorus available	96	0.48	0.45	0.37	0.45
Sodium	96	0.18	0.17	0.16	0.16
Chlorine	96	0.20	0.19	0.16	0.16
Linoleic Acid	96	2.00	1.40	1.00	1.00

Nutrient requirements

• Performance-specific

HY-LINE BROWN COMMERCIAL LAYERS

<< Back to Table of Contents

Robust growth models & accurate nutrient requirements

$$BW = Wm \times exp^{-exp^{-b(t-t_{inf})}}$$

$$BW = (Wm + Wm_u) \times exp^{-exp^{-(b+b_u)(t-t_{inf})}}$$

Prediction of age-specific BW to

- better match nutrient supply to nutrient requirements
- evaluate the economic impact of management decisions on designing target growth curves
- breeding programs
- nutritional management decisions

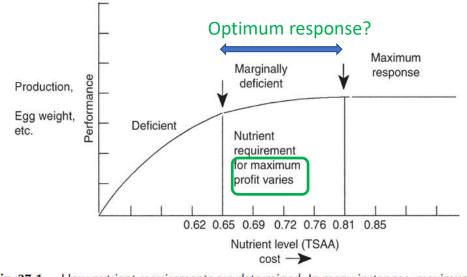
Poultry Science Volume 100, Issue 5, May 2021, 101059

Metabolism and Nutrition

Improving a nonlinear Gompertz growth model using bird-specific random coefficients in two heritage chicken lines

Mohammad Afrouziyeh *, René P. Kwakkel *, †, Martin J. Zuidhof * & 🖾

Show more v


+ Add to Mendeley 😪 Share 🗦 Cite

https://doi.org/10.1016/j.psj.2021.101059 Under a Creative Commons license Get rights and conten open acces

Abstract

Growth models describe body weight (**BW**) changes over time, allowing information from longitudinal measurements to be combined into a few parameters with biological interpretation. Nonlinear mixed models (**NLMM**)

How nutrient requirements are determined? Nutritional Response Models

Fig. 37.1. How nutrient requirements are determined. In many instances, maximum response gives maximum profits. In many instances it does not. If price of feed and product income were constant, we could select one diet that always gives maximum return.

Source: Roland et al., 2000

Nutrient requirements vary

- Metabolizable Energy requirement
 - Laying hens: 2,684 2,992 kcal/kg
 - Broilers: 2,750 3,200 kcal/kg
- Total Sulfur Amino Acid (TSAA) levels (Ahmad and Roland, 2003)
 - 562 859 mg/day/hen depending upon energy and protein cost and market situation
- The requirement depends on the response criteria being evaluated
- We need mathematical models to select the most economical choice under the light of ingredients cost and product price

Take-home messages so far...

- Try to use performance-specific nutrient requirements as opposed to the age-specific ones
- Use robust models to determine nutrient requirements
- Let the energy and protein cost and product price dictate the dietary energy and nutrients levels
- Nutrient requirements vary and you need to choose the most relevant value regarding your target!

Define your feed formulation target

- 1920: Growth rate
- 1940: Feed efficiency and meat yield
- 1990: Least cost
- 2004: Maximum Profit (Guevara, 2004)
- 2010: Sustainable production (Economy, Environment, Social concerns)
- 2020: Flock OR Individual animal level (Zuidhof, 2020)
- 2020: Slower growth and meat quality

Feed formulation models and methods

1. Deal with market variation

- Least Cost Feed Formulation (LCFF)
 - Linear programming models
- Maximum Profit Feed Formulation (MPFF)
 - Nonlinear programming models

2. Deal with variation in feed ingredients composition

- Margin of Safety (MOS) and Stochastic feed formulation
- 3. Deal with both!
 - Multiple Objective Programming (MOP)

Least Cost Feed Formulation (LCFF)

- Setting of nutrient restrictions intended to minimize the diet cost and maximize bird performance
- Meet nutrient requirements

You may want to create your own LCFF spreadsheet using the following tutorial video: <u>https://youtu.be/tEAarcwd300</u>

Source: Afolayan et al. (2008)

Sensitivity analysis of a formulated diet

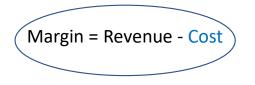
/ariable Cells

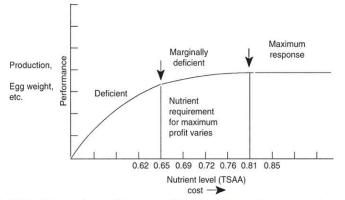
			Final	Reduced	Objective	Allowable	Allowable
Cell		Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$21	CornLevel		0.572773059	0	0.234	0.002854194	0.031518277
\$C\$21	% Inclusion	Wheat	0	0.072056157	0.275	1E+30	0.072056157
\$D\$21	% Inclusion	Wheat Midd	0	0.198508256	0.25	1E+30	0.198508256
\$E\$21	% Inclusion	Soybean oil	0.02653865	0	1.2	0.110556589	0.008769507
\$F\$21	% Inclusion	Canola	0.3	-0.017694272	0.39	0.017694272	1E+30
\$G\$21	% Inclusion	SoybeanMeal	0.022419528	0	0.51	0.134569752	0.001987795
\$H\$21	% Inclusion		0.055190135	0	1.2	0.003073896	0.090198866
\$I\$21	% Inclusion	Oyster	0.003823225	0	0.04	0.010804942	0.631447725
\$J\$21	% Inclusion	Limestone	0	0.010805037	0.05	1E+30	0.010805037
\$K\$21	% Inclusion	D.phosphate	0.006540102	0	1	0.59932083	0.02152778
\$L\$21	% Inclusion	Lys	0.003331506	0	3.8	2.475292586	0.365802161
\$M\$21	% Inclusion		0.001629453	0	9.5	6.414388506	0.495188174
\$N\$21	% Inclusion	SodiumBicarbonate	0	0.213208931	0.06	1E+30	0.213208931
\$0\$21	% Inclusion	Dried whey	0	0.717214926	0.8	1E+30	0.717214926
\$P\$21	% Inclusion	Treonine	0.000848068	0	9.5	6.413142378	2.59480446
\$Q\$21	% Inclusion	Vit premix	0.0025	2.187929024	1.6	1E+30	2.187929024
\$R\$21	% Inclusion	Salt	0.001906274	0	0.04	0.307621647	0.17151071
\$\$\$21	% Inclusion	Mineral premix	0.0025	2.187929024	1.6	1E+30	2.187929024

Constraints

Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
\$V\$4	Weight, kg Diet specification	1	-0.587929024	1	0.042176597	0.037285991
\$V\$6	Diet specification	2.95	0.210344591	2.95	0.122402515	0.138457402
\$V\$7	Protein,% Diet specification	20	0.003307618	20	0.91213385	1.505037054
\$V\$8	Calcium,% Diet specification	0.87	0.016503263	0.87	1.384195493	0.146284224
\$V\$9	Av.phosph.,% Diet specification	0.43	0.058879145	0.43	0.081615807	0.118483242
\$V\$10	Sodium, % Diet specification	0.16	0.016100744	0.16	1.454153664	0.011396238
\$V\$11	Chloride, % Diet specification	0.177522399	0	0.16	0.017522399	1E+30
\$V\$12	Lysine,% Diet specification	1.29	0.054536579	1.29	1.381203339	0.22519065
\$V\$13	Methionine,% Diet specification	0.579645584	0	0.51	0.069645584	1E+30
\$V\$14	Met-Cys% Diet specification	0.99	0.100996682	0.99	2.2080537	0.069295518

If corn price increases by 0.0028\$/kg or decreases by 0.0315\$/kg, the inclusion level (57%) will remain same.


For each unit increase in dietary protein level, the dietary cost will increase by 3.3\$/ton


For each unit decrease in dietary protein level, the dietary cost will decrease by 3.3\$/ton

In a range of 18.5% to 20.91%

Disadvantages of Least Cost Feed Formulation

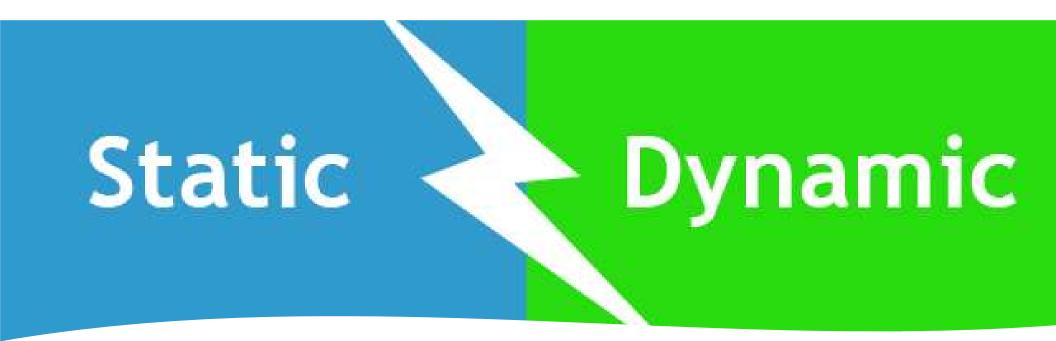
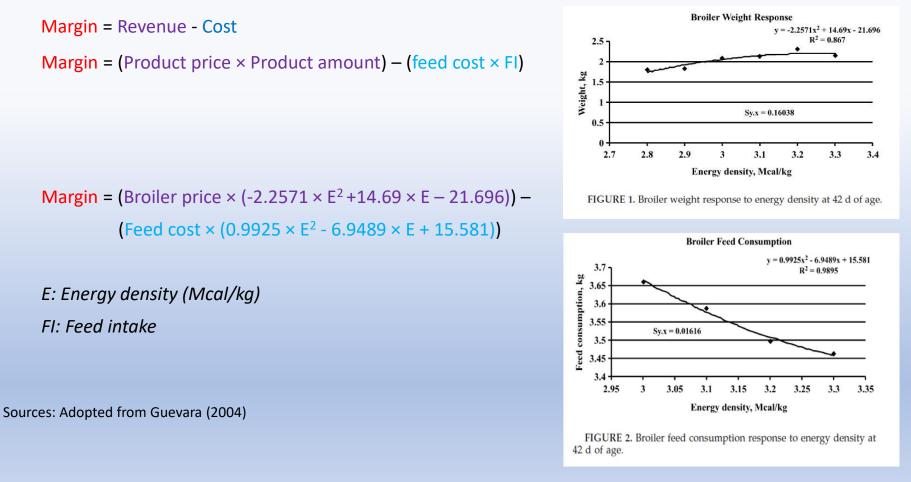

- Reducing feed costs?
 - The cost side of the equation looks attractive but not necessary optimizes profitability

Fig. 37.1. How nutrient requirements are determined. In many instances, maximum response gives maximum profits. In many instances it does not. If price of feed and product income were constant, we could select one diet that always gives maximum return.


Sources: Cerrate and Waldroup (2009); Vieira and Angel (2012); Dadalt et al. (2015)

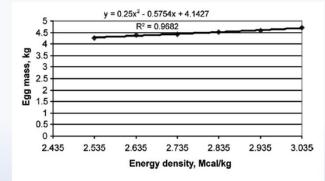
Moving to dynamic feed formulation method

- The response of birds to dietary energy diminishes with increasing nutrient density.
- Law of diminishing return
 - As nutrient intake increases, the performance (BW or Egg mass) also increases, but in a decreasing rate.

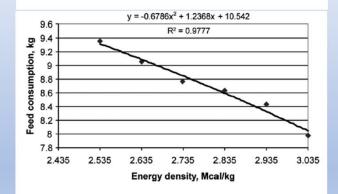
Maximum profit feed formulation in broilers

Maximum profit feed formulation in layers

Margin = Revenue - Cost


Margin = (Product price × Product amount) – (Feed cost × FI)

Margin= (Egg price × $(0.25 \times E^2 - 0.5754 \times E + 4.1427)$) – (Feed cost × $(-0.6786 \times E^2 + 1.2368 \times E + 10.542)$)


E: Energy density (Mcal/kg)

FI: Feed intake

Sources: Adopted from Afrouziyeh et al (2011)

Figure 1. Egg mass response to energy density from 32 to 44 wk of age.

Figure 2. Laying hen feed consumption response to energy density from 32 to 44 wk of age.

Prices	ME (Mcal/kg)	Egg mass (g/day)	Feed consumption	FCR	Margin (US \$/hen)
			(g/day)		
LP ¹	·			•	2.51
NLP ²					
Normal	2.730	52.79	105.48	2	2.70
Corn					
+25%	2.730	52.79	105.48	2	2.31
-25%	2.740	52.89	105.17	1.99	3.15
Soybean meal					
+25%	2.786	53.33	103.82	1.95	2.53
-25%	2.748	52.96	104.96	1.98	2.91
Egg ³					
+25%	2.896	54.44	100.38	1.84	4.12
-25%	2.730	52.79	105.48	2	1.26
¹ Linear programmir ² Non linear program ³ Egg price assumed	nming				

Effects of changing prices of egg and ingredients on optimum dietary ME

Sources: Afrouziyeh et al (2011)

Effects of changing prices on diet formulation

	Price.	Nor	mal	Co	m+	Co	rn–	SB	M+	SB	M-	Eg	gs+	Eg	gs-
Item	US \$/kg	NLP	LP	NLP	LP	NLP	LP	NLP	LP	NLP	LP	NLP	LP	NLP	LP
Ingredient															
Corn	0.3	59.96	60.37	59.96	60.25	68.87	60.37	61.57	60.37	69.21	60.37	61.16	60.37	59.96	60.37
Wheat	0.275	10	0	10	0.13	0	0	10	0	0	0	0.09	0	10	0
SBM ¹	0.51	16.56	19.93	16.56	20	17.63	19.93	11.6	19.93	19.24	20	22.61	19.93	16.56	19.93
Fish meal	1.2	0	4	0	4	0	4	4	4	0	3.99	0	4	0	4
Canola meal	0.39	2	0.77	2	0.68	2	0.77	2	0.77	0	0.71	0	0.77	2	0.77
Soybean oil	1.2	0	4	0	4	0	4	0	4	0	4	4	4	0	4
Limestone	0.04	4	4	4	4	4	4	4	4	4	4	4	4	4	4
OSM^2	0.04	4.77	4.95	4.77	4.95	4.80	4.95	4.77	4.95	4.84	4.95	5.3	4.95	4.77	4.95
DCP ³	1	1.7	1.27	1.7	1.27	1.69	1.27	1.17	1.27	1.71	1.27	1.83	1.27	1.7	1.27
DL-Met	9.5	0.13	0.13	0.13	0.13	0.13	0.13	0.10	0.13	0.13	0.13	0.15	0.13	0.13	0.13
Lys-HCl	3.8	0.12	0	0.12	0	0.10	0	0.07	0	0.09	0	0.05	0	0.12	0
NaCl	0.04	0.27	0.08	0.27	0.08	0.27	0.08	0.21	0.08	0.28	0.08	0.31	0.08	0.27	0.08
Mineral premix	1.6	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Vitamin premix	1.6	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Cost, US \$/kg		0.3455	0.4184	0.3455	0.4637	0.2971	0.3732	0.3780	0.4439	0.3259	0.3929	0.3932	0.4184	0.3455	0.4184
Margin, US \$/hen		2.70	2.51	2.31	2.13	3.15	2.88	2.53	2.29	2.91	2.72	4.12	4	1.26	1.01
Calculated analysis				\square	\square	\square	\square			\square	\square		\square	\square	\square
ME, Mcal/kg		2.730	2.935	2.730	2.935	2.740	2.935	2.786	2.935	2.748	2.935	2.896	2.935	2.730	2.935
Protein, %		14.41	16.64	14.41	16.64	14.47	16.64	14.71	16.64	14.51	16.64	15.29	16.64	14.41	16.64
Lys, %		0.76	0.88	0.76	0.88	0.76	0.88	0.78	0.88	0.77	0.88	0.81	0.88	0.76	0.88
Met, %		0.37	0.43	0.37	0.43	0.37	0.43	0.38	0.43	0.37	0.43	0.39	0.43	0.37	0.43
Met + Cys, %		0.63	0.70	0.63	0.70	0.63	0.70	0.63	0.70	0.63	0.70	0.65	0.70	0.63	0.70
Ca, %		3.79	4.10	3.79	4.10	3.81	4.10	3.87	4.10	3.82	4.10	4.03	4.10	3.79	4.10
Available P, %		0.43	0.46	0.43	0.46	0.43	0.46	0.43	0.46	0.43	0.46	0.45	0.46	0.43	0.46
Na, %		0.16	0.17	0.16	0.17	0.16	0.17	0.16	0.17	0.16	0.17	0.17	0.17	0.16	0.17

¹SBM = soybean meal.

 $^{2}OSM = oyster shell meal.$

 $^{3}DCP = dicalcium phosphate.$

Profit was always higher for NLP method than the LP one

Sources: Afrouziyeh et al (2011)

EXTENSION

PUBLICATIONS

TOPIC AREAS Y

Search UGA Extension

CALENDAR

COUNTY OFFICES

9

ABOUT ~

tension / Publications

Nutritional Response Models: A Workbook to Fit Data From Nutritional Experiments to Several Models

PROGRAMS & SERVICES V

Research Bulletin 440

Faculty Gene M. Pesti

Dmitry V Vedenov Assistant Professor, Agricultural &

Applied Economics

The NRM.xism program is an Excel workbook that you can use to fit data from nutritional experiments to several models. The models may be used to estimate nutritional requirements or the most economical feeding levels of critical nutrients. It requires Microsoft Excel (with enabled macros) and some data in the form of ordered pairs.

Instructions are included in the PowerPoint presentation and on each spreadsheet of the Excel workbook.

9.6

٠.

Flatus and Revision N

· .

MULTIPLE RANGE TEST

•

BROKEN LINE LINEAR ASCENDING

SATURATION

KINETICS

References are included on the Instructions and References page of the workbook.

0

Download NRM 1.4.xism — the Excel Workbook

Download Using NRM 1.0.ppt - the PowerPoint Instructions

OBSERVED

POINTS

QUADRATIC

QUADRATIC ASCENDING

RESPONSE

--

× .

DIETARY NUTRIENT CONCENTRATION

Contact your local UGA Extension office to find out how our team of county

Professor Emeritus, Poultry Science

agents can assist you.

Have a question?

Related Publications

Estimating Crude Protein Variability and Savings of Broiler Feeds Using Microsoft Excel (B 1430)

Biosecurity for On-Farm Pathogen Control in Poultry (C1195)

Biosecurity Basics for Poultry Growers (8 1306)

Mo	del Fit Comparisons			
Model	Sum of Residuals	R^2	Q^m	Critical Xi ²
Linear Regression Model	3056.143	94.96%	9.052	7.815
Quadratic Regression Model	426.383	99.30%	1.065	5.991
Broken-Line (Linear Ascending)	258.300	99.57%	1.031	5.991
Broken-Line (Quadratic Ascending)	426.381	99.30%	1.066	5.991
Saturation Kinetics	472.903	99.22%	1.228	3.841
Logistics, 3 Parameters	434.371	99.28%	1.113	5.991
Logistics, 4 Parameters	432.822	99.29%	1.113	3.841
RNB, Model 1	432.822	99.29%	1.134	3.841
RNB, Model 2	622.650	98.97%	1.525	5.991

Regression models with Q^m>critical Xi², indicating inadequate fits, are highlighted in red

https://extension.uga.edu/publications/detail.html?number=RB440

Energy requirements models

Some potential implications

- valid estimated coefficients for maintenance, growth, and egg production
- Increase predictive performance of energy intake models
- match nutrient supply with nutrient requirements

Poultry Science Volume 101, Issue 1, January 2022, 101518

Peakry	science
1	1
0	

Architecture of broiler breeder energy partitioning models

Mohammad Afrouziyeh *, Nicole M. Zukiwsky *, Jihao You *, René P. Kwakkel *^{, †}, Douglas R. Korver *, Martin J. Zuidhof * ペロ

Show more v

+ Add to Mendeley 😪 Share 🔊 Cite

https://doi.org/10.1016/j.psj.2021.101518 Under a Creative Commons license Get rights and content open access

ABSTRACT

A robust model that estimates the ME intake over <u>broiler breeder</u> lifetime is essential for formulating diets with optimum nutrient levels. The experiment was conducted as a randomized controlled trial with 40 Ross 708 broiler breeder

Functional specifications of the evaluated ME intake models

Model	Function specification
Ι	$MEI_{d} = a \times BW^{b} + c \times ADG_{p} + d \times ADG_{n} + e \times EM + \varepsilon$
II	$MEI_{d} = (a + u) \times BW^{b} + c \times ADG_{p} + d \times ADG_{n} + e \times EM + \varepsilon$
III	$MEI_{d} = (a + uu) \times BW^{b} + c \times ADG_{p} + d \times ADG_{n} + e \times EM + \varepsilon$
IV	$MEI_d = a \times BW^b + (c + v) \times ADG_p + d \times ADG_n + e \times EM + \varepsilon$

Estimated coefficients are lowercase letters.

 $MEI_d = daily ME intake (kcal/d);$

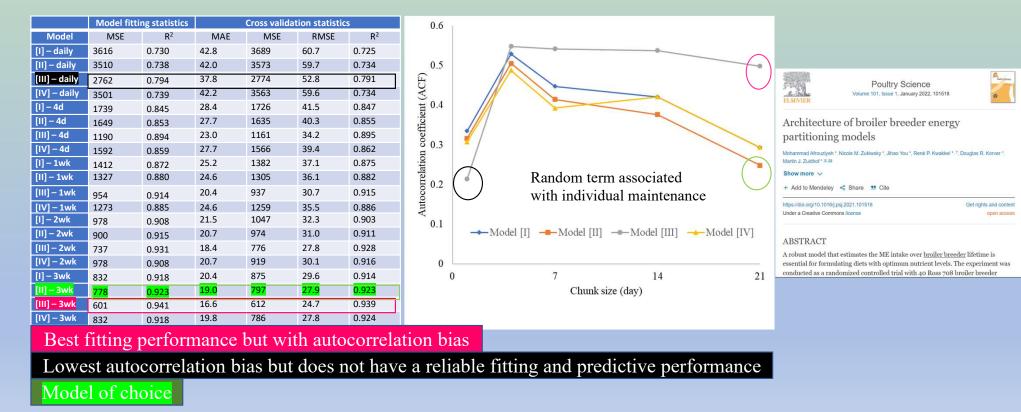
BW = BW (kg)

ADGp = positive ADG (g/d)

 $ADG_n = negative ADG (g/d)$

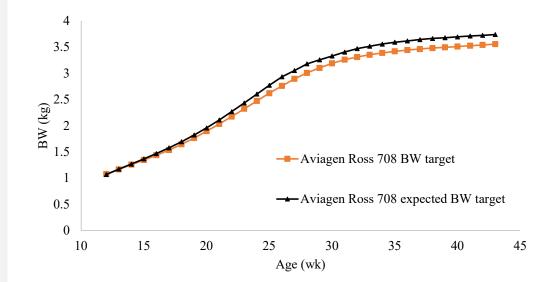
EM = egg mass (g/d)

u = bird-specific random term associated with individual maintenance


uu = age related random term

v = bird-specific random term associated with individual ADG

 ε = residual error


Source: Afrouziyeh et al., 2021

Selection of the model of choice

Afrouziyeh et al (2021)

Ross 708 broiler breeder expected BW based on the recommended ME intake

 $MEI_d = (100.47 \times BW^{0.56}) + (3.49 \times ADG_p) + (3.16 \times ADG_n) + (2.96 \times EM)$

- MEI_d = daily Metabolizable Energy intake (kcal/d)
- BW = Body Weight (kg)
- ADG_p = positive Average Daily Gain (g/d)
- ADG_n = negative Average daily Gain (g/d)
- EM = egg mass (g/d)

Take-home messages so far...

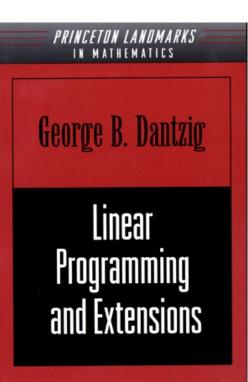
- Maximum response (e.g. BW) is not always equal to maximum profit!
- Minimizing cost is just part of the story! Try to think out of the box!
- Profit is the final goal in economy.
- Try to evaluate mathematical programming models thoroughly, not just from the fitting-performance perspective.

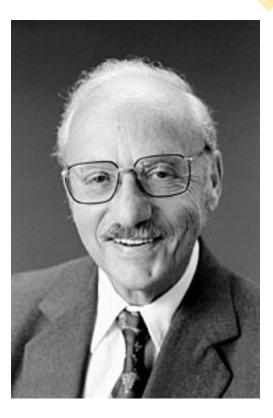
Interested in creating a Maximum Profit Feed Formulation spreadsheet?

https://youtu.be/33sjsiy_6ck

Variation in nutrient composition of feed ingredients *NIR device*

Image: https://www.spectroscopyeurope.com/product/portable-nir-raw-material-and-feed-analyses


Uncertainty and risk are inherent in biological variability


• "... I work on planning under uncertainty.

That's the big field as far as I'm concerned; that's the future. Maybe I'm the only one who says that."

George Dantzig, Father of mathematical programming

(Roush et al., 2007)

Margin of safety and Stochastic Programming

- A simple way to adjust the nutrient matrix to compensate for nutrient variability
- Subtracting one-half of a SD from the mean value of nutrients
- Increase the probability of meeting an animal's requirement from 50% for a linear program to greater than or equal to 69% for a linear program adjusted for an MOS

	Feed ingredient						
CP statistics	Corn	Soybean meal					
No. of samples	132	114					
Mean (%)	6.90	47.51					
Minimum (%)	5.34	44.10					
Maximum (%)	8.30	51.50					
Variance (%)	0.35	2.01					
SD (%)	0.59	1.41					
CV (%)	8.60	2.99					

Source: Alhotan et al. (2014)

 Table 1. Crude protein statistics for corn and soybean

 meal samples
 — expressed on an as-fed basis

Interested in creating a Stochastic Feed Formulation spreadsheet?

https://youtu.be/xG-kyjd4wCQ

MOP (Multiple Objective Programming)

combination of Maximum Profit (NLP) and Stochastic feed formulation

Account for market and nutrient variability simultaneously

MOP (Multiple Objective Programming)

https://youtu.be/FeDnXUWp7RA

Take-home messages so far...

- Examine each batch of ingredients before formulating your diet
- Remember to take account for the variation in nutrient composition of feed ingredients
- Keeping track of ingredients' composition is a useful tool to enlighten the future management decisions.

Future direction

- Develop a user-friendly multi-objective feed formulation software
- Develop feed library
- Investigate nutritional value of local feed ingredients
- Use mechanistic models to predict animal performance as opposed to empirical models

Contact me at afrouziy@ualberta.ca

poultryinnovationpartnership.ca