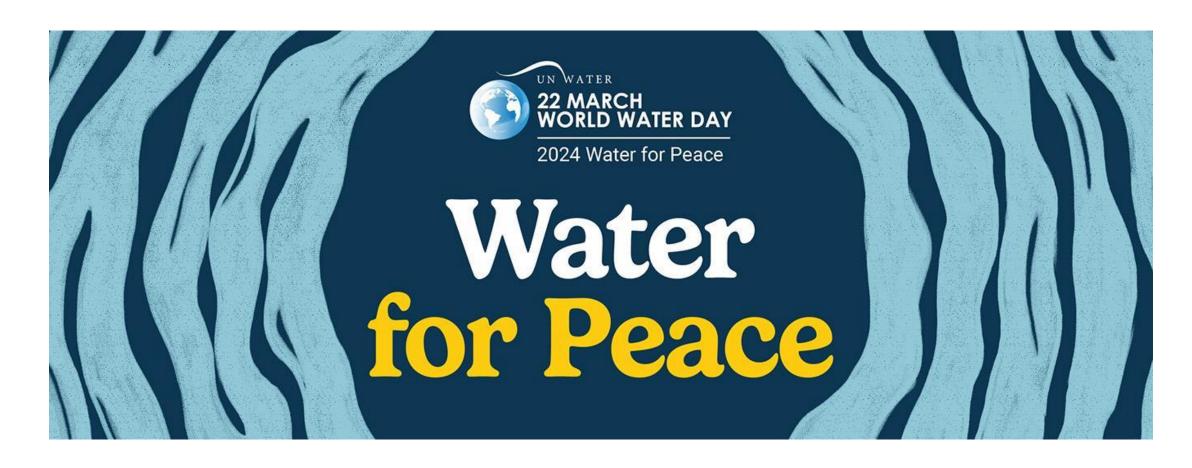
Precautions and Checks for Poultry Drinking Water Quality During **Seasonal Transitions**

POULTRY INNOVATION PARTNERSHIP

change collaboration


poultryinnovationpartnership.ca

Mohammad Afrouziyeh

- Research Associate
- University lecturer

Happy World Water Day!

A farm story

- A 30,000-broiler farm
- Water source: dugout
- Final BW was around 2.1 kg
- After 3 cycles of water sanitation, the final BW went up to 2.8 – 2.9 kg
- Sanitation
 - Hydrogen peroxide for cleaning between flocks
 - Chlorine during the flocks

Seasonal variation in water quality

Temperature

Conventional Variables: pH, Total Dissolved Solids (TDS), Conductivity, & Suspended Sediment

Nutrients

Metals

Hydrocarbons

Industrial Chemicals

water temperatures

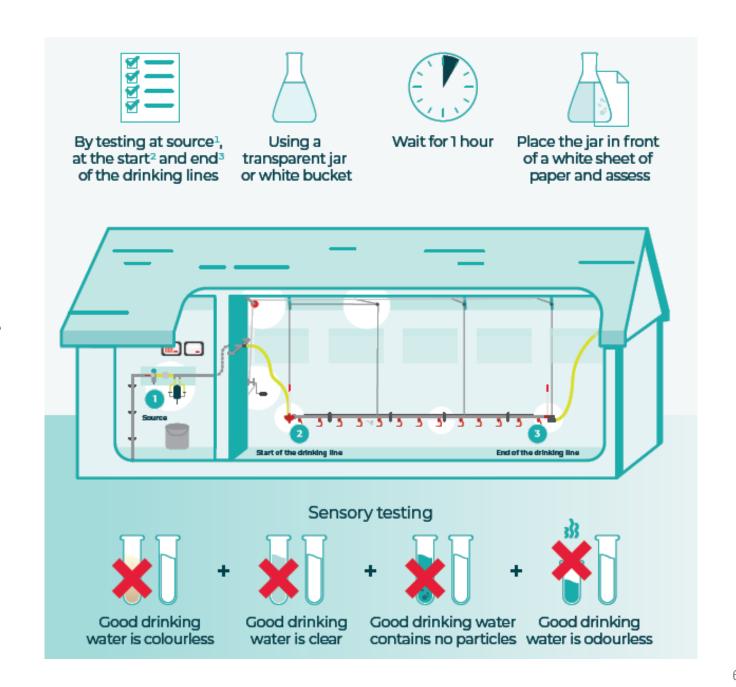
Microbial growth and algae proliferation

Increased evaporation rates

 Higher concentrations of minerals and dissolved solids in water sources

Rainfall

collect harmful chemicals and contaminants along the way



Important precautions and checks on water quality

- Regular monitoring for early detection of changes in water quality and timely intervention
- Proper infrastructure maintenance
 - Inspecting the filter for blockages and wear
 - Checking the storage tank for cleanliness and algae growth
 - Examining drinkers for leaks, malfunctioning valves, or sagging areas
 - Monitoring water flow rate in nipple drinkers
 - Regularly flushing the water line to remove sediment
 - Avoid puddles in the vicinity of the run-off area and poultry house
 - Proper waste removal and composting
- Adjust treatment methods

Looking and smelling regularly (daily)

Inspecting the filters

Algae growth in the filter

Manganese contamination in water

Slimy mess containing iron & bacteria

Sagging areas in the drinker line!

Slope pressure regulator

Solution for uneven floor

Avoid puddles in the vicinity of the run-off area and poultry house

- Puddles can attract wild birds and vermin
- source of bacteria and viruses from, for example, droppings from birds flying overhead
- if necessary, install drainage to prevent puddle formation

Create a written water treatment program!

- Water line cleaning between the flocks
 - When?
 - What product?
 - How?
- Daily water treatment during the flock
 - Filtration
 - Choose the right sanitation product(s)
 - Make a list of water quality testing tools
 - Check the injectors regularly
 - Gauge the killing power of your disinfectant

Strategic water management practices!

Routine practices versus

Strategic and efficient practices

Water microbiological test

Routine practice

- ➤ Take a bacteria test
- ➤ Sampling protocols:
 - Sterile container
 - What are you testing for?
 - Sample shipment

- ✓ Establish a plan to clean water lines and treat the water daily
- ✓ THEN, if there are still problems, dig into getting bacteria tests done

Water mineral test

Routine practice

- > Take a mineral test
- ➤ Getting the results and not having a clue what they mean

- ✓ Find your previous mineral test (3 years or less)
- ✓ Consult the standard acceptable levels for poultry water (*PIP Poultry Water App*)
- ✓ Develop a plan accordingly

Using acids in water

Routine practice

- Choose the cheapest acid
- ➤ Use the acid without any well-written plan
- ➤ Not monitoring the acid effects

- ✓ Understand the purpose of using acid:
- ☐ Tightening gut for a specific health issue?
 - √ Use organic acid
- ☐ Lowering pH for water treatment or solubilizing minerals?
 - ✓ Use Inorganic acid
 - ✓ Use organic acid for weak alkalinity

Using acids in water

Organic acids (for gut health)

- Citric acid
- Acetic acid
- Propionic acid
- Formic acid
- Lactic acid
- Peracetic acid/PAA: an organic chemical compound (mixture of Acetic Acid and Hydrogen Peroxide)

Inorganic acids (for lowering pH)

- Phosphoric acid
- Sulphuric acid
- Hydrochloric acid
- Sodium bisulfate
- Acidified copper sulfate

Overuse of organic acids

Photo credit: Proxy-Clean Products

Using inorganic acids for a long period to lower pH

- Try to use chloride-free acids
- Try to use equipmentfriendly acids such as phosphoric-based products

Photo credit: Proxy-Clean

Water disinfection technologies

UV light

Ozone

Chlorine

Chlorine dioxide

Hydrogen peroxide

Peracetic acid

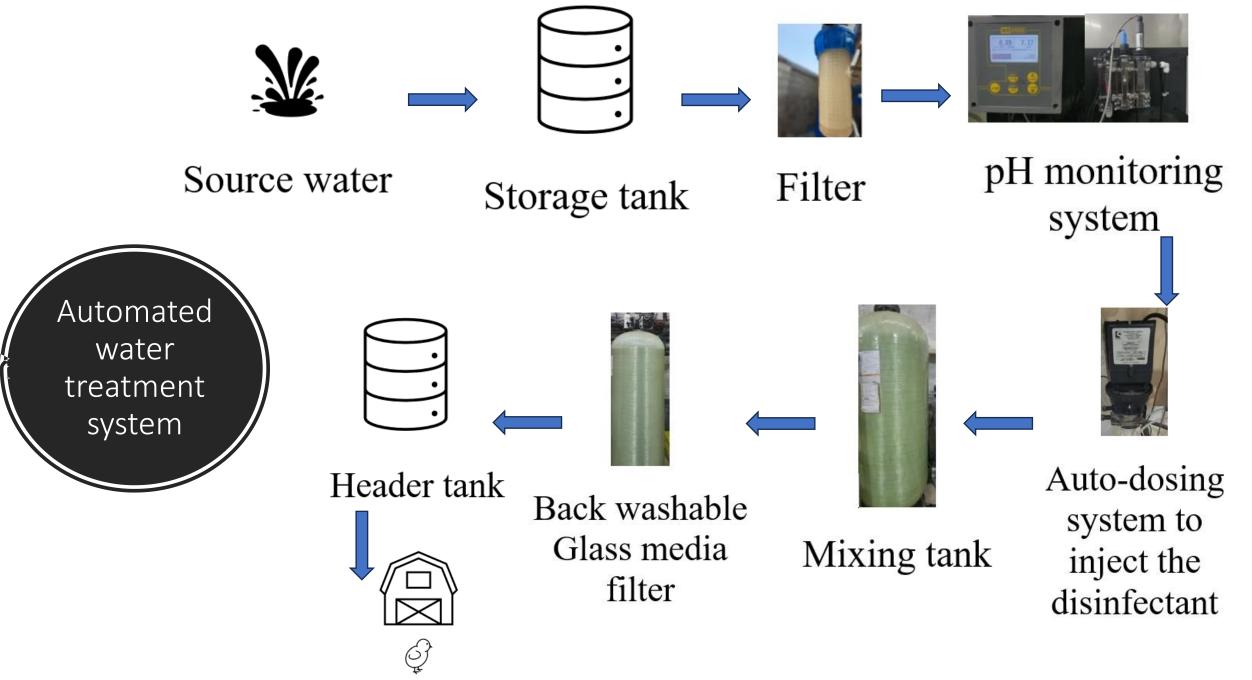

Cold plasma

Photo credit: Proxy-Clean

Photo credit: Dr. Susan Watkins

Poultry house

Check water treatment system

Routine practice

➤ Hearing the pump is clicking and assuming the treatment system is working well

- ✓ Test disinfectant residual at the beginning of the water line AND the end of the water line
- ✓ Measure and document!
- ✓ Data is vital for your future plans!

Hydrogen peroxide residual

Target end-of-the-line concentration: 75 to 150 ppm Then what should be the starting point?

Titration-type Hydrogen Peroxide test kit Measures up to 1000 ppm

Where is the critical point in my drinker line?

 Use the inspection camera AND oxidizer residual test strips together!

Chlorine dioxide residual test

Target Chlorine Dioxide levels:

Total: up to 5ppm

• Free: 0.5 to 0.8 ppm

Total & Free chlorine strips (\$28)

Total & Free chlorine kit (\$190)

Chlorine residual and ORP test

Measure ALL of these:

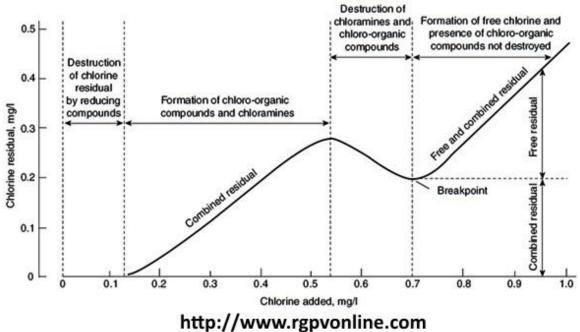
Total Chlorine: 8-10ppm

Free Chlorine: 3-6ppm

ORP: more than 650 mV

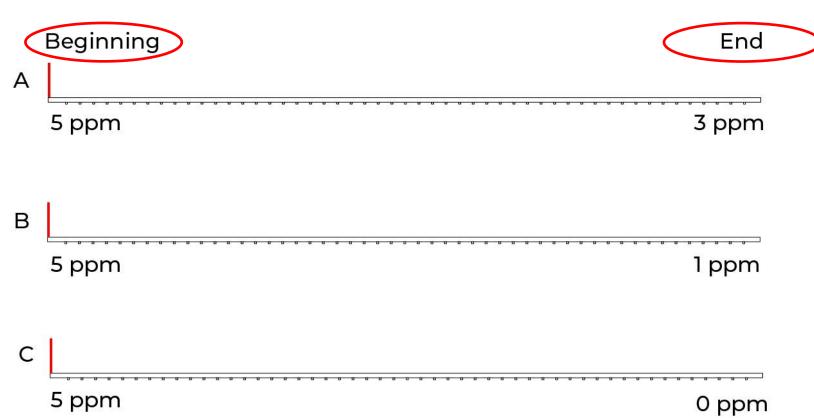
pH & ORP meter (\$245)

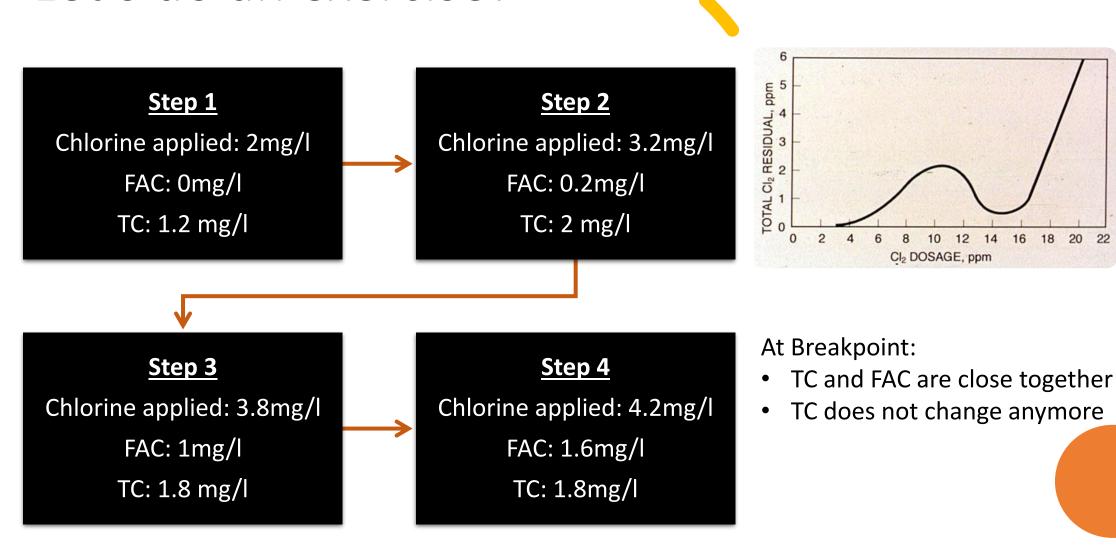
Only tests Total chlorine (\$23)


Only tests Free chlorine (\$12)

Why should you measure Total Chlorine, Free Chlorine and ORP?

- Total Chlorine = Combined Chlorine with junks + Free Chlorine
 - Total Chlorine = 8 10ppm
- Free Chlorine = HOCl + OCl-
- Free Chlorine = Strong guy + Weak guy
 - Free Chlorine: 3 6ppm
- ORP shows the strong guy!
 - ORP: above 650 mV


Break Point Chlorination Curve


Which drinker line is cleaner?

Concentration of free chlorine at the beginning and end of the line

Let's do an exercise!

FAC: Free Available Chlorine

TC: Total Chlorine

Chlorine is a good sanitizer ONLY IF:

- Water pH is between 4 and 7
- Low organic matter in water
- Water temperature above 19°C
- Low water turbidity (less cloudy)
- Fresh product and good storage
- Enough exposure time
 - CT = (Concentration of free chlorine × Time) = 8
- Remember, always measure Total chlorine AND Free chlorine AND water ORP

What does "enough exposure time" mean? A measure to gauge the killing power

Free chlorine	Contact time	СТ
residual	(min)	(Concentration
(ppm)		× Time)
0.2	40	8
0.4	20	8
1	8	8
2	4	8
4	2	8
8	1	8

Photo credit: Josh Wipf

PIP Poultry Water App

pippoultrywaterapp.com

PIP Poultry Water App

Always start with the right questions!

- 1 Water Observational Test
- 2 On-Farm Water Test
- 3 Water Microbiological Test
- 4 Water Mineral Test
- 5 Water System Maintenance

- 6 Water Sampling Protocol
- 7 Microbial Treatment and Water Sanitation Protocol
- 8 Waterline Cleaning Protocol Between and During Flocks
- 9 Biofilm Cleaning Protocol
- 10 On-farm Water Test Tools
- 11 Vaccination Through Drinking Water
- 12 Well Shock Chlorination

Information needed before using the app

Observational test

- Water color, taste, odor, water stains on the surfaces
- Collect water sample in two glasses

On-farm tests

- pH TDS
- EC ORP

Water microbiology

Water minerals

Managerial practices on the maintenance and operation of water system

Water tests to request from the lab

➤ Does your water leave behind any residue (stains, scale, film) in any of the following colors?

Clear

Brown

✓ Pink

White

✓ Reddish-brown

Gray

Yellow

Black

Blue-green

Observational Water Test Results and Recommendations

Outcome	Action
Based on your	Request Pseudomonas
answers to the	analysis. If your water
water residuals	is contaminated, then
questions, you	follow the instructions
might need a specific	in the water sanitation
microbial test on your	section of the app.
water.	

On-Farm Tests Results and Recommendations

<u>+</u>		
Outo	ome	Action
Your	water EC level is	Try to use reverse
abov	e the acceptable	osmosis to
level	. To convert	treat the water.
mea	surements of	
elect	rical conductivity	
(EC)	to total dissolved	
solid	s (TDS), or vice	
versa	a, use the	
equa	itions below:	

What should I expect from the water app?

- On-farm water test tool recommendations
- How to interpret the on-farm tests results

Interpret your water lab test results

8. What is the level of sulfates in your water?

Less than 40 mg/l	
Between 40 and 250 mg/l	
Above 250 mg/l	
Not Sure	

Water Mineral Test Results and Recommendations

Outcome	Action
Your water's sulfate	The best thing to do is
level is above the	shock chlorination of
acceptable level.	the well (refer to the
A rotten egg odor	"Well Shock
represents the	Chlorination" section
presence of hydrogen	in the app) and
sulfide-producing	then treating the
bacteria. High	water with hydrogen
concentrations of	peroxide; filter it out
sulfate can have a	and clean it up.
laxative effect in birds.	Hydrogen peroxide is
	much better for
	treating sulfur than
	other canitizers

Information on water system maintenance

- ✓ Proper pump and piping size
- √ Water storage maintenance
- ✓ Water filters maintenance
- √ Standpipes maintenance
- √ Nipple drinker maintenance
- ✓ Water flow rate in water lines
- ✓ Water pressure regulator maintenance
- ✓ Water lines used during brooding

- 6 Water Sampling Protocol
- Microbial Treatment and Water Sanitation Protocol
- Waterline Cleaning Protocol Between and During Flocks
- 9 Biofilm Cleaning Protocol
- 10 On-farm Water Test Tools
- 11 Vaccination Through Drinking Water
- 12 Well Shock Chlorination

Water treatment protocols

Step 5. Shut the regulator's valves off when the cleaning product filled into the system. Leave the product in the water

pippoultrywaterapp.com

Take home massages

Understand your drinking water challenges

Develop a written plan based on the recommended Actions and Protocols

Implement the plan using the commercially available products

Monitor the treatment system using on-farm tools!

